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This work investigates several key statistical measurements of turbulence induced

by Rayleigh-Taylor instability using data from well resolved numerical simulations

at moderate Reynolds number with the goal of determining the degree of departure

of this inhomogeneous flow from that of homogeneous, isotropic turbulence. The

simulations use two miscible fluids with unity Schmidt number and moderate density

contrast (3/2 to 9). The results of this study should find application in subgrid-scale

modeling for large-eddy simulations and Reynolds-Averaged Navier-Stokes modeling

used in many engineering and scientific problems.
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I. INTRODUCTION

There is considerable interest in the turbulent flows induced by Rayleigh-Taylor instability

(RTI)1,2 in both engineering and scientific applications. Briefly, RTI is initiated when a

heavier layer of fluid is placed on the top of a layer of lighter fluid in a gravitational field.

Small perturbations at the interface make it unstable and, as a result, lead to the further

growth of the instability and the release of gravitational potential energy. Visualization of

RTI-induced flow in its linear and nonlinear stages shows that the heavier fluid moves down

in a shape of fingers or mushrooms. When the density difference between the heavy and light

fluids is small, the displaced light fluids move up with a similar shape. This near symmetry

breaks down when the density disparity increases. The Atwood number

A =
ρ2 − ρ1

ρ2 + ρ1

. (1)

is used to characterize this disparity, where ρ1 and ρ2 are the constant values of density for

light and heavy fluids in their pure, unmixed state.

It is of considerable interest to compare and contrast statistics from RTI-induced turbu-

lent flow, which is inhomogeneous in the vertical direction as a direct result of the external

driving force along the direction of the gravity or acceleration, with statistics from ho-

mogeneous, isotropic turbulence (HIT). The buoyancy production induced by gravity acts

predominantly at low wave numbers (long wavelengths), and as a result, it can be viewed

as an analogue of forcing functions that have been employed extensively in fully resolved

direct numerical simulations (DNS) of forced HIT. The main challenge is to determine in

turbulent RTI-induced flow the degree of departure from isotropy and the appropriate scal-

ing laws in directions both aligned with and perpendicular to gravity. The goal of this

paper is to present many of these key measurements calculated from well resolved direct

numerical simulations of turbulent miscible fluids5. The information obtained will be very

useful for future modeling efforts using large-eddy simulation (LES) and Reynolds-averaged

Navier-Stokes (RANS) approaches.

II. NUMERICAL SIMULATIONS

Direct numerical simulations of RTI flow were performed using the variable-density

Navier-Stokes equations for incompressible flow without surface tension in the conservative
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form:

(ρYα),t + (ρYαuj),j = (ρDYα,j),j ; (2)

(ρui),t + (ρuiuj),j = ρgi − p,i + τij,j . (3)

Here ui is the mass-averaged velocity component in direction xi, ρ is the mass density, p is

the pressure, D is the Fickian diffusivity, Yα is the mass fraction of species α = 1 or 2, and

gi is the acceleration defined as (0, 0,−g). The stress tensor τij is given by

τij = 2µS?ij , S?ij = Sij −
δij
3
Skk , Sij =

1

2
(ui,j + uj,i) , (4)

where µ is the dynamical viscosity. We use the convention of summation over repeated

Roman indices, but no summation over repeated Greek indices. The spatial coordinates xi

are also designated as (x, y, z) and the velocity components ui as (u, v, w). Spatial indices

1 & 2 refer to the homogeneous horizontal directions and 3 refers to the vertical direction

aligned with gravity. Summing Eq. (2) over species α yields the familiar continuity equation.

In incompressible flow, values of pure-fluid density ρα are constant, and variations in density

ρ arise solely in mixtures. The mass fraction Y1 = 1− Y2 is related to the density by

Y1 = (ρ−1 − ρ−1
2 )/(ρ−1

1 − ρ−1
2 ) . (5)

With Eq. (2), the incompressibility condition on the dilatation (velocity divergence) is

∇ · u = ∇ · ρD∇ρ−1 . (6)

Unlike incompressible flow, this generally gives rise to a finite dilatation, but, even so, it is

found to be negligibly small in the late-time, fully developed turbulent state. Both diffusivity

D and the kinematical viscosity ν = µ/ρ are set to the same constant value to give a Schmidt

number Sc = ν/D = 1. Details of the numerical scheme are given by Cook et al. (2004)3 and

Jang & de Bruyn Kops (2007)4, and a description of a large DNS with Atwood number A=0.5

is given by Cabot & Cook (2006)5 with additional results presented by Cabot (2006)6. For

low Atwood number (A ≤ 0.5) the simulations used 10th-order compact spatial derivatives

and 3rd-order Adams-Bashford-Moulton time advancement with a fairly sharp low-pass filter

to suppress aliasing errors. A 3rd-order extrapolation of the density time derivative allows

the variable-density incompressibility condition in Eq. (6) to be satisfied with a single-pass

solution of a Poisson equation for the pressure. For higher Atwood numbers, an alternative
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4th-order Runge-Kutta time advancement scheme7 was used, and multiple iterations were

made on the pressure field to satisfy (6), both of which were found to improve numerical

accuracy and stability.

Runs were performed in approximately cubic numerical domains with uniform grid spac-

ing. Free-slip impermeable boundaries were imposed at the top and bottom of the domain,

and periodic boundaries were imposed in the two horizontal directions. The flows were ini-

tialized with a stationary interface between the high and low density fluids whose vertical

position was perturbed with random variations having a characteristic horizontal wavelength

λ0, which act to seed the instability; the simulations proceeded until the mixing layer filled

60–70% of the domain in the vertical direction. The A = 0.5 (ρ2/ρ1 = 3) case used 30723

grid points5, while the A = 0.2 (ρ2/ρ1 = 3/2) simulation used only 20483 grid points and

the A = 0.8 (ρ2/ρ1 = 9) simulation used 20482 × 2304 grid points.

FIG. 1. (Color online) Visualization of a vertical slice of the density field in the RTI mixing layer

at late time for the A = 0.5 case5. Heavy fluid is dark, light fluid is light. Gravity is directed

downwards.

A visualization of the turbulent mixing layer in RTI-induce flow at late time is shown in

Figure 1 from the simulation for A = 0.5. Flow induced by RTI experiences several stages of
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growth. Small perturbation modes at first develop in the linear regime largely independent

of each other. The growth eventually enters a nonlinear, coupled regime, developing chaotic

structure. If allowed to develop long enough, the flow becomes fully turbulent in the final

stage, characterized by large Reynolds numbers (defined as a length scale times velocity

scale divided by viscosity) and self-similar behavior. For the range of moderate density

ratios considered here (A = 0.2–0.8), the flow displays little visual asymmetry. Near the

end of the simulations, the largest structures in the flow may begin to be affected by the

finite numerical domain, so we choose a time somewhat before this but late enough so that

the turbulence is fairly well developed. Note that even at late times in the simulations the

global production and dissipation rates have still not completely reached a steady self-similar

state5,6, and examination of the turbulent statistics in the next section casts some doubt on

whether these flows have attained a fully turbulent, high Reynolds number state.

In the statistics presented hereafter, lengths are scaled by initial perturbation wavelength

λ0 and times are scaled by (λ0/gA)1/2, unless otherwise noted. (Note that the value of λ0

looses all meaning once the flow develops well into the turbulent regime; it is merely used

as a fiducial with respect to the initial state.) Most of the statistics presented here are

from the A = 0.5 case, which is the largest simulation and provides the best statistics.

Typically we will show results at a scaled time t = 25 late in the simulations, at which time

small-scale motions in the flow are approaching isotropy as measured by the ratio of vertical

to horizontal enstrophy (vorticity squared) components in the middle of the mixing layer,

shown in Figure 2a. The A = 0.8 case lags slightly behind the lower Atwood number cases

at late times, indicating that small-scale anisotropy may be more persistent for very high

density ratios.

The vertical extent of the mixing region can be expressed in terms of the product width

h, defined for a stochiometric value of 1/2 as3

h = 2

∫ ∞

−∞
min(〈X1〉, 〈X2〉) dz , (7)

where 〈Xα〉 is the horizontally averaged mole fraction of species α. The product width

is approximately one half of the full mixing layer width delineated by the 5% and 95%

mean concentration levels. At late times the product width grows quadratically with time,

as seen in Figure 2b. The prefactor α on the modeled quadratic growth term αgAt2 is

similar for all Atwood numbers, falling in the range 0.020–0.024. The mixing layer width,

5



AAAAAAAAAAAAAAAAAAAAAAAA
A
A
A
AA
A
A
A
A
A
A
A
A
A
A
A

A

A

A

A
AAA

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEE

E
E
E
E
E
E
E
EEEEE

E
E

E

E

E

E

E
EEEEE

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
T
T
T
T
T
T
T
T
T
TTTTT

T
T

T

T

T

T

T
TT0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

en
st

ro
ph

y 
ra

tio

time

A A=0.8

E A=0.5

T A=0.2

€ 

2 ωz
2 ωx

2 +ωy
2

(a)

0

10

20

30

40

0 10 20 30 40

pr
od

uc
t w

id
th

time

A=0.2

A=0.5

A=0.8

(b)

FIG. 2. (Color online) (a) Isotropy of the vorticity field is shown as a function of time, measured

by the ratio of vertical to horizontal enstrophy components averaged over a vertical extent of h/3

in the middle of the mixing layer. (The gap in the A = 0.2 data resulted from data lost in a

catastrophic file system failure.) (b) The growth of the product width h is shown for the different

Atwood numbers.

whatever its definition, is often used as the large outer scale for turbulent RTI flow and its

time derivative is used as a velocity scale5,6; hence an outer scale Reynolds number can be

defined as Reh = hḣ/ν, which attains values of about 104 at late times in the simulations

discussed here. The Reynolds number based on the Taylor microscale is a less arbitrary

metric to characterize turbulence, and it will be discussed in more detail in §III B.

III. STATISTICAL MEASUREMENTS

A. Isotropy of the velocity and its derivatives

Vertical profiles of the fluctuation intensity (square of the rms) of the velocity compo-

nents and their various spatial derivatives across the mixing region at late times are shown

in Figure 3. The velocity components in Figure 3a display a high degree of anisotropy; the

fluctuation intensity of the velocity derivatives in Figure 3b, on the other hand, tend to

be much more isotropic. These properties are seen to extend across the entire mixing re-
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FIG. 3. (Color online) Vertical profiles (horizontal averages) of fluctuation intensity for (a) velocity

components and (b) velocity derivative components are shown at time t = 25 in the A = 0.5 case,

demonstrating statistical equivalences and the degree of anisotropy.

gion. While the statistics of velocity components in RTI flow directly reflect the anisotropic

production of energy by buoyancy predominantly at larger scales, the statistics of velocity

derivatives are weighted toward much smaller scales that are less directly affected by the

anisotropic production. The small-scale motions become more isotropic through the turbu-

lent cascade process, an effect that has been previously noted in RTI flow36 and also observed

in anisotropically forced channel and pipe flows8.

Profiles of the fluctuation intensity of the various velocity derivatives in Figure 3b show

both isotropy and anisotropy with respect to homogeneous isotropic turbulence (HIT). Ve-

locity derivatives uα,β for which α 6= β are called “transverse”, and those with α = β are

called “longitudinal”. All of the longitudinal velocity derivatives (uα,α) have isotropic fluc-

tuations, probably because the flow is nearly divergence-free, and these are half as large in

intensity as those for the horizontal transverse derivatives of horizontal velocity components

(u1,2 and u2,1), the same as found in HIT9. In HIT, all transverse derivatives would give

the same fluctuation intensity. However, in RTI flow the horizontal transverse derivatives

of the vertical velocity component (u3,1 and u3,2) are larger by about 17%, and the vertical

transverse derivatives of the horizontal velocity components (u1,3 and u2,3) are smaller by
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TABLE I. Velocity and velocity-derivative isotropy in homogeneous isotropic turbulence (theoret-

ical) and late-time (t = 25) Rayleigh-Taylor instability flow with gravity in direction 3.

Flow 〈u2
3〉/〈u2

1〉 〈u2
3,3〉/〈u2

1,1〉 〈u2
1,2〉/〈u2

1,1〉 〈u2
1,3〉/〈u2

1,1〉 〈u2
3,1〉/〈u2

3,3〉 〈uα,βuβ,α〉/〈u2
β,β〉

HIT 1 1 2 2 2 -1/2

RTI (A = 0.2) 3.379 1.029 1.975 1.693 2.376 -0.500

RTI (A = 0.5) 3.463 1.030 1.969 1.709 2.356 -0.499

RTI (A = 0.8) 3.400 1.033 1.965 1.698 2.344 -0.497

same amount, such that their average is the same as the horizontal-horizontal transverse

combination. This means that both the vertical velocity (u3) and the characteristic vertical

length scales, measured by Taylor microscales (〈u2
1〉/〈u2

1,3〉)1/2 and (〈u2
2〉/〈u2

2,3〉)1/2, are larger

than their horizontal counterparts in RTI flow, but not in equal measure, i.e., there is greater

asymmetry in the velocity components than in their derivative length scales, reflecting the

greater anisotropy of the largest scales. Values of these ratios are given in Table I for HIT

and late-time RTI flow; all statistics in this table are globally averaged near a scaled time

of t = 25, and statistically equivalent terms have been averaged together. The rightmost

column is calculated with 〈u1,2u2,1 + u2,3u3,2 + u3,1u1,3〉/〈u2
1,1 + u2

2,2 + u2
3,3〉. RTI results are

seen to be insensitive to the Atwood number (density contrast) over the intermediate range

of values simulated.

The enstrophy components 〈ω2
γ〉 = 〈(uβ,α − uα,β)

2〉, where α 6= β 6= γ, are seen to ap-

proach isotropy at late time in Figs. 2a & 4a. The combinations 〈u2
α,β〉+ 〈u2

β,α〉, α 6= β, have

nearly isotropic values, as deduced from Figure 3b, as do the cross terms 〈uα,βuβ,α〉 shown

in Figure 4b. This also implies that the off-diagonal strain terms 〈4S2
αβ〉 = 〈(uα,β + uβ,α)

2〉,

α 6= β, are also nearly isotropic, as well as the diagonal ones 〈S2
αα〉 = 〈u2

α,α〉. We can define

the mass-specific dissipation rate associated with each velocity component as

〈εα〉 = 〈2νuα,iS?αi〉 , (8)

which comprise different mixtures of velocity derivative terms and remain anisotropic (see

Fig. 4c), with the vertical direction about 20% larger than those for the horizontal directions

for the A=0.5 case. The usual relation in HIT that 〈εα〉 = ν〈ω2
α〉 for any α does not hold

in RTI flow; instead it is straightforward to show, using Table I and assuming negligible
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FIG. 4. (Color online) Vertical profiles (horizontal averages) of the fluctuation intensity of velocity

derivative functions at time t = 25 in the A = 0.5 case: (a) vorticity components, (b) cross

terms, (c) dissipation components, and (d) dissipation terms. The vertical position is scaled by

the product width of the mixing layer h.

dilatation, that

〈ε3〉 ≈ ν〈ω2
2〉+ ν〈u2

3,1 − u2
1,3〉 , 〈ε1〉 ≈ 〈ε2〉 ≈ ν〈ω2

2〉 −
ν

2
〈u2

3,1 − u2
1,3〉 , (9)

where 〈u2
1,3〉 ≈ 0.72〈u2

3,1〉. This anisotropy is needed to balance the larger rate of production

that the vertical velocity experiences directly through buoyancy and which has not been

equitably distributed to the other components through the pressure-strain terms. Despite
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the anisotropy in individual dissipation components, the total dissipation rate in the middle

of the mixing layer at late times is still found to satisfy the homogeneous relations

〈ε〉 =
3∑
j=1

〈εj〉 = 2ν〈S?ijS?ij〉 ≈ ν〈ωiωi〉 ≈ 15ν〈u2
α,α〉 (10)

for any α, as seen in Figure 4d. The cross-term averages also satisfy the homogeneous

relations

〈−uα,βuβ,α〉 ≈
1

2
〈u2

γ,γ〉 ≈
1

10
〈ω2

γ〉 (11)

for any combination with α 6= β and any γ. Thus the statistics of many combinations of

velocity derivative fluctuations become surprisingly isotropic while others retain the imprint

of the large-scale anisotropy found in the velocity components themselves (see Table I).

B. Length scales

The initial interface perturbations in the A = 0.5 simulation had a well resolved dominant

wavelength of λ0 = 32 grid points. The initial interface perturbations for the other Atwood

number cases were slightly less well resolved, with λ0 = 16 grid points for A = 0.2 and

λ0 = 21 grid points for A = 0.8. The product widths of the mixing layer h are ∼ 20 in

units of λ0 at t = 25 and ∼ 30 near the end of the runs (see Fig. 2b). The definitions of

turbulence length scales are typically anisotropic and will depend on the location of spatial

averaging due to variations in the vertical direction. The Taylor microscale can be defined

per velocity component and direction as

λα,β =
(
〈u2

α〉/〈u2
α,β〉

)1/2
, (12)

where it is understood that fluctuating parts of the velocity components are used and

angle brackets represent a spatial average. Typically longitudinal derivatives are consid-

ered (α = β). As in isotropic turbulence, the total mean mass-specific dissipation rate is

〈ε〉 ≈ 15ν〈u2
α,α〉, so the longitudinal component Taylor microscale can be approximated by

λα,α ≈
(
15ν〈u2

α〉/〈ε〉
)1/2

, (13)

which scales as 〈u2
α〉

1/2
. A component Taylor microscale Reynolds number is then given by

Reλα = 〈u2
α〉1/2λα,α/ν , (14)
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TABLE II. Turbulence statistics for the A = 0.5 case at t = 25 for different spatial averaging

domains.

average 〈u2
1〉 〈u2

3〉 〈u2
1,1〉 〈u2

3,3〉 〈ε1〉 〈ε3〉 η λ1,1 λ3,3 Reλ1 Reλ3

midplane 0.875 3.051 3.007 3.030 0.110 0.136 0.0340 0.539 1.003 65 224

mid-slab 0.873 3.037 2.966 2.985 0.109 0.134 0.0341 0.543 1.009 65 225

global 0.572 1.041

which scales as 〈u2
α〉; hence the vertical value will be 3–4 times the horizontal one (see

Tables I–III). The Kolmogorov dissipation scale is usually given in its isotropic form as

η =
(
ν3/〈ε〉

)1/4
, (15)

although one could instead use 3 times the dissipation rate for each component 〈εα〉 given

in (8). At late times the vertical dissipation rate is about 20% larger than the horizontal,

giving only a 5% difference in ηα values, so we will only report the isotropic value of η here.

The spatial averaging domain (denoted by angle brackets) can be (1) a plane such as the

midplane, (2) a volume enclosing fairly homogeneous turbulence with vertical extent consid-

erably narrower than the width of the mixing layer, e.g., a slab centered on the midplane, or

(3) the entire numerical domain for a global average. Global averages must be normalized

with a representative height scale to account for the vertical inhomogeneity, which is rather

arbitrary; we therefore only report global values of λα,α, which are unambiguous ratios of

global averages. Table II gives the values of these quantities in scale units using different

averaging domains for the A = 0.5 case with ν = 1/128 in scaled units. Both horizontal di-

rections are averaged together in these results. The “mid-slab” domain uses an unweighted

average of data spanning a vertical extent of h/3 centered on the midplane, and it gives

values in close agreement with the midplane averages. The same “mid-slab” statistics are

given in Table III for different values of Atwood number near the end of each simulation

when Reynolds numbers attain their greatest values (ν in scaled units is
√

5/256 ≈ 1/114

for A = 0.2 and
√

135/1024 ≈ 1/88 for A = 0.8); these show the same trends as in Table II.

There is a fair degree of separation between the longest, intermediate, and smallest phys-

ical length scales at late times in the numerical simulation results with h : λ : η ≈ 20 :

1 : 1/30. In HIT12, the largest scale is represented by an “inertial scale” or “outer scale”

` = K3/2/ε, where K is the kinetic energy of turbulent motions, the smallest scale is rep-
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TABLE III. Late-time turbulence statistics for different Atwood numbers with “mid-slab” average.

A time 〈u2
1〉 〈u2

3〉 〈u2
1,1〉 〈u2

3,3〉 〈ε1〉 〈ε3〉 η λ1,1 λ3,3 Reλ1 Reλ3

0.2 35.2 1.477 5.565 3.168 3.091 0.132 0.150 0.0356 0.683 1.342 95 362

0.5 30.5 1.257 4.403 3.402 3.360 0.126 0.147 0.0331 0.608 1.145 87 307

0.8 27.5 1.434 4.473 3.298 3.342 0.177 0.211 0.0401 0.659 1.157 70 216

resented by the Kolmogorov scale η = (ν3/ε)1/4, and the intermediate scale is the Taylor

microscale given by λ = (10Kν/ε)1/2, hence the scales are related by λ = 101/2`1/3η2/3;

if one associates h with `, this relation is roughly satisfied by the RTI results. Note that

for very large dynamic ranges (measured by `/η), λ is biased toward the smaller dissipa-

tion scales. This level of separation in scales, while satisfying from a numerical simulation

standpoint, is not equivalent to the existence of an extensive inertial range and an adequate

amount of separation between large, energy-containing scales and dissipation scales that is

expected in fully developed turbulence. Analyses of turbulent flow spectra10,11 show that the

Taylor-microscale Reynolds number must be substantially greater than 100 in order for an

inertial range to develop. In the numerical simulations discussed here, the Taylor-microscale

Reynolds numbers for vertical velocity components are roughly 200–400 at the latest times,

which may marginally qualify as fully developed turbulence, but the horizontal counterparts

are considerably lower with values below 100, which clearly does not. This disparity in

vertical and horizontal Reynolds numbers is also evident in the power spectra for individual

velocity components shown in Figure 7 below; the requirements for the development of a

true inertial range are discussed in greater detail in §III E.

C. Correlation functions

The inhomogeneous vertical direction causes some challenge in spectral analysis of RTI-

induced turbulent flows. In order to obtain the information unavailable to the spectral

analysis, we turn our attention to the correlation function. When discussing correlations

and spectra in one dimension, just as with the velocity derivatives, “longitudinal” refers to

correlations in the same direction as the velocity component, and “transverse” refers to cor-
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relations in a direction normal to the velocity component. (This nomenclature is not mean-

ingful for density variations.) The correlation tensor is given by Rab(r) = 〈a(x)b(x + r)〉,

where a, b here can be velocity components or the density, and where r is the separation

vector in any direction; because of inhomogeneity in the vertical direction, Rab may also be

height-dependent, depending on the spatial averaging domain. We choose separations along

the cartesian axes, i.e., r = (δx, 0, 0), (0, δy, 0), or (0, 0, δz). The corresponding normalized

correlation function is defined as Cab(r) = Rab(r)/Rab(0). Note that ρ and w are strongly

anticorrelated with 〈ρw〉/(ρrmswrms) = -0.7 to -0.8 in well developed RTI flow3.

The correlation functions for the horizontal velocity components in the middle of the

mixing region are shown in Figure 5a. These horizontal correlations are averaged over a

central slab with vertical range spanning h/3 centered on the midplane z0, i.e.,

Rab(δx|z0) =
3

h

∫ z0+h/6

z0−h/6
〈a(x, y, z)b(x+ δx, y, z)〉 dz . (16)

where the angle brackets here denote an average over xy planes, and likewise for separations

in the y direction. These correlations are exactly symmetric about zero separation because

of the imposed periodicity. Averages over xy planes of data displaced from the midplane

are used to obtain correlations in the vertical direction:

Rab(δz|z0) = 〈a(x, y, z0)b(x, y, z0 + δz)〉 ; (17)

these correlations are not symmetric about the midplane, as clearly seen in Figure 5a & c

(solid lines), although the degree of asymmetry is fairly modest. In most turbulent flows the

longitudinal correlations stay positive at all separations and transverse correlations become

negative at some finite separation9,12. However, Figure 5a shows that it is the longitudinal

correlations that go negative and the transverse ones that stay positive for horizontal separa-

tions of the horizontal velocity components in RTI, which may arise from the flow structure

induced by the vertical forcing. The transverse vertical correlations show the normal dip

into negative territory. In HIT the longitudinal correlation lengths are typically
√

2 times

larger than the transverse ones, and this is also observed in the widths of the correlation

function profiles at small separations.

The correlation functions for the vertical velocity component w and the density ρ are

shown in Figure 5b for horizontal separations using Eq. (16) and in Figure 5c for vertical

separations using Eq. (17). The values of Cww and Cρw are very close in both vertical and
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FIG. 5. (Color online) The correlation functions of velocity components and density for the A =

0.5 case at t = 25 using mid-slab averaging for horizontal correlations in (a) and (b), midplane

averaging for vertical correlations in (a) and (c), and global vertical correlations in (d). The

longitudinal horizontal correlation Cuu(δx|z0) in (a) is plotted with the separation length scaled

by 1/
√

2. Statistically equivalent terms have been averaged together.

horizontal directions because of the high degree of correlation between ρ and w induced

by buoyancy. These functions are much narrower in the horizontal directions than those

in the vertical direction, and the former become negative with peaks at r/h = 0.5. The

autocorrelation function of the density Cρρ is quite close to Cww and Cρw in the horizontal

directions, but this function is somewhat narrower in the vertical direction.
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Vertical correlations using global averaging, viz.,

Rab(δz) =
1

2h

∫ ∞

−∞
〈a(x, y, z)b(x, y, z + δz)〉 dz , (18)

are shown in Figure 5d; these are symmetric with respect to direction of separation for auto-

correlations and are made symmetric for cross-correlations using (Rab+Rba)/2 combinations.

The autocorrelation of the vertical velocity (longitudinal) and density fluctuations are always

positive, whereas the autocorrelation of the horizontal velocity components (transverse) be-

come negative; the vertical correlation lengths for vertical velocity are much longer than for

horizontal velocity, which is to be expected from the asymmetric driving in RTI flow. The

autocorrelation for vertical velocity and the cross-correlation of vertical velocity and density

are again nearly identical.

A correlation length Λα,β can be calculated by integrating over the autocorrelation func-

tion Cαα(δxβ). The meaning of this is problematic for correlation functions that become

negative. Furthermore, the results are inaccurate for correlation functions that do not decay

to zero at maximal separations, which is a problem that arises in simulations at late times

when very large-scale structures become marginally correlated on a global scale, i.e., the

finite numerical domain begins to constrain the flow. A more robust measure is the HWHM

of the correlation function, denoted here as Hα,β, which is an intermediate length scale rep-

resenting the characteristic distance of positive correlation of variable α in direction β. The

radius of curvature of the correlation function near the origin, corresponding to structure

at smaller scales, is equal to the Taylor microscale λα,β. In HIT λ1,2/λ1,1 = 1/
√

2 and

λ3,3/λ1,1 = λ3,2/λ1,2 = λ1,3/λ1,2 = 1; using values in Table I, RTI flow gives λ1,2/λ1,1 = 0.71

and λ3,3/λ1,1 = 1.82, λ3,2/λ1,2 = 1.65, λ1,3/λ1,2 = 1.08, i.e., Taylor microscales are longer

for vertical velocity components than for horizontal ones, and the Taylor microscales are

more isotropic for horizontal velocity components. The ratios for the HWHM correlations

in RTI flow near midplane are H1,2/H1,1 = 0.68 and H3,3/H1,1 = 3.5, H3,2/H1,2 = 2.7,

H1,3/H1,2 = 1.03, which is similar to the Taylor microscale ratios for horizontal velocity

terms, but with much more anisotropy in the vertical velocity terms. In HIT, Cuu(δy) goes

negative at moderate separation and integral correlation lengths satisfy Λ1,2/Λ1,1 = 1/2, but

in RTI flow, Cuu(δx) goes negative instead and we find Λ1,2/Λ1,1 ≈ 1.
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D. Structure functions

Since the classical work of Kolmogorov in 194113, structure functions have been used

extensively to characterize turbulence in the inertial range14. The second-order structure

function is directly related to the scaling of the energy spectrum15,16, while straining and

sweeping motions12,17 can be analyzed theoretically and experimentally in terms of higher

order structure functions18–20. Structure functions of order n for variable a are given by

S(n)(r) = 〈[a(x + r)− a(x)]n〉 , (19)

which are related to the autocorrelation functions in the previous section for n = 2. The

Batchelor parametrization of the 2nd order structure function is given by16

S
(2)
B (r) = (〈ε〉/3ν) r2

[
1 + (1/3B)3/2(r/η)2

]−2/3
, (20)

where B is a constant. It is not clear how to generalize this to anisotropic flow, nor even to

longitudinal and transverse directions. For correlations and structure functions computed

in homogeneous regions, one has the relation S(2) = 2〈u2
α〉(1 − C(r)), where C is the auto-

correlation function for the velocity component uα. Because the radius of curvature of C

at r = 0 is equal to the corresponding Taylor microscale λ, S(2) → 〈u2
α〉r2/λ2 as r → 0.

For longitudinal structure we would expect from Eq. (13) that a suitable prefactor would be

〈ε〉/15ν in an equation of the form of (20).

In Figure 6, the transverse and longitudinal 2nd order structure functions are shown for

the vertical velocity component w at the midplane for small separations. In the longitudinal

(vertical) direction there is a slight asymmetry between bubble side (δz > 0) and spike side

(δz < 0). A Batcheloresque form

S
(2)
B (r)/〈w2〉 = (r/λ)2

[
1 + (1/3B)3/2(r/η)2

]−2/3
(21)

is also shown in Figure 6 (dashed lines) using B = 7.9 for the transverse and 11.0 for the

longitudinal direction. The transverse (horizontal) structure function fits this form quite

well out to r/λ = 10, but the longitudinal curves deviate noticeably and never even really

develop a distinct r2/3 regime. This may be due to an insufficiently high value of h/λ in the

simulation.
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FIG. 6. (Color online) Midplane 2nd-order structure function for the vertical velocity, scaled by

〈w2〉, in the A = 0.5 case at t = 25 for (a) transverse separations (r = δx) and (b) longitudinal

separations (r = ±δz) showing r2 behavior for small separations and approximate r2/3 behavior for

large separations. The model in (21) is shown with dashed lines using an eyeball fit for parameter

B.

E. Component energy and vorticity spectra

The component energy spectra can provide relevant information regarding the degree

of anisotropy at different spatial scales, although this is limited to the extent that some

representation of spectra can be constructed for the inhomogeneous flow direction. One-

dimensional energy spectra for different velocity and vorticity components are shown in

Figure 7. The 1D (co)spectrum in the horizontal direction x is computed with discrete

Fourier transforms of functions φ (and ψ) in x, denoted φ̂ (and ψ̂), and the power is averaged

over the other horizontal direction y and optionally over different vertical positions z,

Eφψ(k1|z) =
1

LyLz

∫ Ly/2

−Ly/2

∫ z+Lz/2

z−Lz/2

<
{
φ̂(k1|y′, z′) ψ̂?(k1|y′, z′)

}
dy′ dz′ , (22)

and likewise for the 1D (co)spectrum in the horizontal direction y, changing k1 to k2 and

y to x. We use the property for periodic functions that the correlation function and power

spectrum are Fourier transforms of one another to construct approximate “pseudo-spectra”

in the vertical direction z. Vertical correlation functions (cf. §III C, Figs. 5a & c) are
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FIG. 7. (Color online) One-dimensional spectra of (a) velocity and (b) vorticity at midplane at

t = 25 in the A = 0.5 case. Vertical spectra (in k3) for velocity components were constructed using

Fourier transforms of vertical autocorrelation functions. Statistically equivalent terms have been

averaged together.

made symmetric for positive and negative separations around midplane using the func-

tion [Rφψ(δz|z0) + Rφψ(−δz|z0)]/2, then Fourier transformed to give Eφψ(k3|z0). The 1D

spectrum of a velocity component in the same direction as the velocity component, Eαα(kα),

is called a “longitudinal” spectrum, and the 1D spectrum of a velocity component in a di-

rection perpendicular to the velocity component, Eαα(kβ), α 6= β, is called a “transverse”

spectrum. Two-dimensional horizontal (co)spectra, Eφψ(k|z), are computed by binning the

power of 2D discrete Fourier transforms in x and y of functions φ (and ψ) in bands of wave

number magnitude, and optionally averaging over different vertical positions z:

Eφψ(k|z) =
1

Lz

∫ z+Lz/2

z−Lz/2

κ=k+∆k/2∑
κ=k−∆k/2

<
{
φ̂(k1, k2|z′) ψ̂?(k1, k2|z′)

}
dz′ , (23)

where κ = (k2
1 + k2

2)
1/2. Both 1D and 2D discrete spectral functions are normalized such

that their sums over all represented wave numbers equals the mean of the product of the

functions,

〈φψ〉 =
kα max∑
kα=0

Eφψ(kα)∆kα =
kmax∑
k=0

Eφψ(k) ∆k . (24)

One-dimensional energy spectra in transverse directions near midplane in Figure 7a show

18



that the velocity fluctuations tend to become isotropic at small dissipation scales. This can

also be demonstrated in longitudinal directions using the vertical pseudo-spectra. Although

the vertical pseudo-spectra are noisy at high wave numbers, the results suggest that both

longitudinal and transverse spectra for all velocity components collapse isotropically at small

scales. In contrast, at the large spatial scales (low wave number modes) the anisotropy

remains quite pronounced.

Differences in the 1D horizontal vorticity spectra (Fig. 7b) can be ascribed to different

mixtures of longitudinal and transverse velocity derivative components. The V22(k1) and

V33(k1) spectra are nearly equal while the V11(k1) spectrum differs with more power at low

wave numbers. Spectra for the velocity derivatives in the vorticity terms group together

depending on whether the spectral direction is longitudinal or transverse with respect to the

underlying velocity component, and V11(k1) is comprised of two transverse terms while the

others are a mix of longitudinal and transverse. Note that 2D vorticity spectra in horizontal

planes (not shown) give the more expected result that V11(k) and V22(k) are statistically

equivalent and differ from V33(k).

A generalized energy spectrum was proposed for RTI flow by Zhou21 that takes into

account the influences of both the external driver and turbulent nonlinear interactions22.

The inertial range of this spectrum, in the form E(k) ∼ k−m, will exhibit a scaling exponent

m that varies between the classical Kolmogorov spectrum (m = 5/3) at higher wave numbers

and one with a steeper slope (m = 7/4) at lower wave numbers. The inertial range must be

sufficiently long to exhibit this split in the RTI energy spectra. Compensated 2D horizontal

spectra are shown in Figure 8 using the Kolmogorov scaling and the RTI scaling appropriate

for the m = 7/4 range. In one case we use only the vertical components in the energy E33(k)

normalized with vertical dissipation term ε3; and in the other case we sum over all velocity

components, Eii(k), and normalize with the total dissipation rate ε. The slope of the vertical

component alone is seen to be consistent with either a k−5/3 Kolmogorov spectrum or the

k−7/4 spectrum proposed by Zhou for RTI flow21. However, the narrowness of the inertial

range and the level of noise in the numerical simulation data unfortunately make it difficult to

distinguish clearly the small difference in slopes between these two scalings or to observe the

predicted change in slopes. We observe that scaling velocity terms by (gAh)1/2 and density

terms by ∆ρ does a fairly good job collapsing the data for different Atwood numbers, at

least for the low-to-moderate density ratios considered here. Because the dissipation rate
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FIG. 8. (Color online) Compensated 2D horizontal spectra for the vertical velocity component

E33(k) (thick lines) and for the sum of all velocity components Eii(k) (thin lines) calculated near

the midplane at t = 25 for the A = 0.5 case. In (a) the k−5/3 Kolmogorov scaling is used, and in

(b) the k−7/4 Rayleigh-Taylor scaling proposed by Zhou21 is used.

is observed to be about 1/2 the production rate in RTI flow5, the mass-specific dissipation

rate ε ≈ gz〈ρw〉/2〈ρ〉 should scale as gA(gAh)1/2. With these scalings, both the Kolmogorov

and Zhou compensated spectra are independent of Atwood number.

Values of ∼ 1.5 for the plateau region of the compensated spectra in Figure 8a are

consistent with results from other simulations of turbulent flows23. Note, however, Yeung

& Zhou23 found that at higher Reynolds numbers in HIT there will be a second relatively

flat region. These authors determined that this lower wave number region, rather than the

plateau itself, represents the beginning of a proper inertial range. Also, at the high-wave-

number end of the inertial range of HIT, a region of shallower slope is sometimes observed

(which appears as a bump in compensated spectra) and is attributed to a “bottleneck” effect

in the turbulence cascade24–26. While a slight rise is seen in the compensated spectra at the

high-wave-number end of the plateau regions in Figure 8, the inherent anisotropy in the

spectral components, as well as the limited dynamic range of the spectra here, precludes

any definitive statement about such detailed structure in RTI flow spectra at this time.

The horizontal velocity components are seen in Figure 7 to have much shallower spectra

than the vertical component as a result of anisotropic forcing5. Because of this, the com-
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pensated spectra for the sum of all velocity components in Figure 8 do not fit the proposed

scalings at all. The difference in forcing between vertical and horizontal velocity components

is demonstrated in Figure 9, which shows the (horizontal) scale distribution of terms in the

vertical and horizontal kinetic energy equations,(
1

2
ρw2

)
,t

+

(
1

2
ρw2uj − wτzj

)
,j

= ρwgz − wp,z − w,jτzj , (25)(
1

2
ρu2

i

)
,t

+

(
1

2
ρu2

iuj − uiτij

)
,j

= −uip,i − ui,jτij , (26)

whose global averages, denoted by angle brackets, are given by〈
1

2
ρw2

〉
,t

= +〈ρw〉gz − 〈−pw,z〉 − 〈w,jτzj〉 ≡ +Pb − Πz − εz , (27)〈
1

2
ρu2

i

〉
,t

= +〈pui,i〉 − 〈ui,jτij〉 ≡ +Πh − εh , (28)

where the index i is summed over only x and y in (26) and (28). (Note that εz and εh here

are volume-specific dissipation rates.) Buoyancy production, pressure-strain, and dissipation

terms appear on the right-hand sides of (27) and (28) with + and − signs to indicate if they
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are sources or sinks. Two-dimensional horizontal cospectra are calculated near the midplane

using their constituent terms (gz being constant in the buoyancy production term). Because

the flow is nearly incompressible at late times, the pressure-strain terms nearly balance, i.e.,

Πh ≈ Πz. The vertical component is forced at the largest scales by buoyancy production (Pb).

The horizontal scales, on the other hand, have energy injected at intermediate scales via the

pressure-strain (Πh) at the expense of the vertical kinetic energy (−Πz), and the dynamic

range in the simulation is probably inadequate to allow the horizontal scales to achieve a

Kolmogorov-like spectrum. The shape of the spectra for vertical and horizontal velocity

components is overlaid on their respective production spectra in Figure 9 to highlight their

close resemblance, especially at larger scales; the velocity spectra have somewhat greater

small-scale energy content than the production spectra as a result of the turbulence cascade.

Reynolds numbers and inertial range requirements. At large enough Reynolds number a

turbulent flow develops an inertial range — a well-defined power-law region at intermediate

scales that separates large energy-containing scales and small dissipative scales. It is thought

that turbulence at inertial range scales take on a universal character independent of the

type of large-scale forcing in the flow. The existence and extent of the inertial range is

often discussed in terms of the outer-scale Reynolds number based on the inertial scale

`, which characterizes the size of energy-containing turbulent eddies (see §III B); in RTI

flow, ` is comparable to the mixing layer width h. The inertial-scale Reynolds number

for HIT12 is Re` = (`/η)4/3 = 〈3u2
α/2〉1/2`/ν = 3Re2

λ/20, where η is the Kolmogorov scale

(15) and Reλ is the Taylor-microscale Reynolds number; values of Re` are comparable to

those based on mixing layer width and growth rate, Reh = hḣ/ν. To the eye, the range

in high Reynolds number spectra27 that appears to have power-law behavior extends from

wavelengths about 5 times shorter than the peak in energy spectrum (which we associate with

`) to about 50η; this only requires Reλ > 100 with an overall range of about (Reλ/100)3/2.

Dimotakis10 postulated, however, that the long-wavelength end of the inertial range actually

begins at the Liepmann-Taylor scale, Λ = (5/2)1/2λ, giving a much narrower range of about

Λ/50η = (Re`/104)1/4 = (Reλ/258)1/2. This limiting value of Reλ ≈ 250 is only high

enough for the first appearance of the inertial range. Triadic interaction analysis provides

an estimate of the desired minimum length of the inertial range11 based on the scaling of

local and nonlocal interactions28,29. The critical Taylor-miscroscale Reynolds number of the

minimum state obtained from that study has a higher value of about 560. In any case, to
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qualify as fully developed turbulence in these more rigorous senses, the Taylor-microscale

Reynolds numbers in DNS or laboratory experiments of RTI turbulent flow should achieve

values greater than ∼ 250 in all directions.

The Taylor-microscale Reynolds numbers for vertical velocity components in the DNS

results are about 200–400 at the latest times (see Table III), which is marginally near the

level needed to form an inertial range, but those for the horizontal components are 3–4

times lower at the sub-100 level. This disparity manifests itself in the power spectra shown

in Figures 7 & 9, in which the vertical velocity component appears to be developing a

well-defined -5/3 power-law region, but the less energetic horizontal components do not

exhibit any power-law behavior in their spectra. The commingling of energy and dissipation

scales that occurs in these numerical simulations means that their spectra do not achieve

a universal inertial range and may explain the lack of truly self-similar behavior that was

observed in some statistical quantities5.

The results presented in this subsection strongly suggest that a single, outer-scale

Reynolds number (Re) is inadequate for characterizing highly anisotropic turbulence. The

outer-scale Reynolds number Re ∼ 104, which blends all velocity components, appears to

be sufficient to achieve fully developed turbulence in the numerical simulations; but the

horizontal flow components, with a Taylor-microscale Reynolds number Reλ1 < 100, are

clearly not turbulent.

F. Skewness and Flatness

The skewness and flatness of the velocity derivatives are significant indicators of the

properties of turbulent flows. In HIT, the skewness of the velocity derivatives indicates the

rate of production of vorticity through vortex stretching30. Indeed, the non-zero value arises

from the nonlinearity of the Navier-Stokes equations, and the classical Kolmogorov theory

predicts a value independent of Reynolds number15,31. The flatness of velocity derivatives, on

the other hand, provides a way to assess the intermittency of the inertial range32. However,

these factors have not been measured previously in high Reynolds number RTI turbulence.

The skewness S and flatness F are given by

S = 〈u3
α,β〉/〈u2

α,β〉3/2 , F = 〈u4
α,β〉/〈u2

α,β〉2 . (29)
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FIG. 10. (Color online) Vertical profiles of (a) skewness and (b) flatness for velocity derivatives at

t = 25 for the A = 0.5 case.

These are plotted in Figure 10 at midplane with a horizontal plane average. The skewness

for transverse derivatives is noisy but appears to be zero on average, and it is finite for

longitudinal derivatives. The skewness for horizontal longitudinal derivatives is about −0.5

across most of the mixing layer (deviating only at the outer edges), while the skewness

for the vertical longitudinal derivative (u3,3) varies across the mixing layer with a value of

about −0.7 in the middle and progressively more negative values toward the outer regions.

The flatness also varies a great deal across the mixing layer, with minimum values at near

midplane of about 6.5 for longitudinal derivatives and 9.0 for transverse derivatives. Values

of flatness greater than the gaussian value of 3 indicate the presence of intermittency.

These values are good agreement with the experimental measurements31–33, in which the

skewness and flatness of the longitudinal velocity derivative were found to be around −0.5 to

−0.6 and 6 to 7, respectively, at comparable values of the Taylor microscale Reynolds num-

ber. Jiménez et al.34 studied these measurements in HIT using DNS. At Taylor microscale

Reynolds number of 168, the skewness and flatness of the velocity derivative for u1,1 were

found to be −0.525 and 6.1, respectively. The flatness of the transverse gradients u1,2 was

found to be 9.4. In DNS of RTI flow with lower Reynolds number and small Atwood number,

values of vertical and horizontal longitudinal skewness of -1.0 and -0.2 were observed35, and

in simulations of buoyancy-driven variable-density turbulence, values of around -0.7 and -0.4
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were observed36. While these results are in general agreement with previous experimental

and simulation measurements, note that the values of the velocity-derivative flatness should

increase as Reλ increases with time in the RTI-driven flow. The larger values seen here

toward the edges of the mixing region likely arise from lack of self-similarity there rather

than Reynolds number effects35.

G. Strain rate eigenvalues

The character of the turbulence in the mixing layer is essentially the same at all Atwood

numbers and is typical of any fully turbulent flow. The three real eigenvalues of the velocity

strain tensor S and their associated eigenvectors were calculated in the midplane region

at late times. There is a positive (extensional) eigenvalue σ1, an intermediate eigenvalue

σ2 of either sign, and a negative (compressive) eigenvalue σ3; their sum is the dilatation

(divergence of velocity), which is negligibly small in well-developed, turbulent RTI flow.

The ratios of these eigenvalues (σ1:σ2:σ3) is on average about 4:1:-5, which is close to the

values of 3:1:-4 found in many types of turbulent flows37.

Vortex stretching is the mechanism by which energy is transferred to smaller scales in

turbulent flow, and understanding the alignment of vorticity and strain in turbulence may

aid in developing and evaluating subgrid-scale models38. The production term for enstrophy

‖ω‖2 is Pω = ω · S · ω, where ω is the vorticity pseudovector, and the corresponding

production term for ‖∇ρ‖2 is proportional to P∇ρ = −∇ρ ·S · ∇ρ. The strain tensor can be

written in dyadic notation in terms of unit eigenvectors ei as

S =
3∑
i=1

eiσiei , (30)

hence

Pω =
3∑
i=1

(Pω)i = ‖ω‖2
3∑
i=1

σi cos2(ei,ω) (31)

and

P∇ρ =
3∑
i=1

(P∇ρ)i = −‖∇ρ‖2

3∑
i=1

σi cos2(ei,∇ρ) , (32)

where cos(a,b) = a · b/(‖a‖ ‖b‖) is the cosine of the angle between the vectors a and b.

A histogram of the cosine of the angles is shown in Figure 11, and mean values of the

square of the cosines are tabulated in Table IV for the middle of the mixing layer at late
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FIG. 11. (Color online) Histograms of the cosine of angles between strain rate eigenvectors, vor-

ticity, and density gradient in the middle of the mixing layer at t = 25 in the A = 0.5 case. Values

near unity correspond to parallel alignment of the vectors, and values near zero correspond to

orthogonal alignment.

TABLE IV. Mean properties of strain rate eigenvalues, vorticity, and density gradient in the middle

of the mixing layer at late time in the simulations for different Atwood numbers.

Atwood number 0.2 0.5 0.8

〈σ3/σ1〉 -1.23 -1.23 -1.23

fraction of σ2 > 0 0.76 0.76 0.76

〈cos2(e1,ω)〉 0.31 0.31 0.30

〈cos2(e2,ω)〉 0.53 0.53 0.54

〈(Pω)2〉/〈(Pω)1〉 0.84 0.93 0.94

〈(Pω)3〉/〈(Pω)1〉 -0.49 -0.49 -0.50

〈cos2(e1,∇ρ)〉 0.27 0.28 0.28

〈cos2(e3,∇ρ)〉 0.53 0.52 0.52

〈(P∇ρ)2〉/〈(P∇ρ)1〉 0.10 0.09 0.07

〈(P∇ρ)1〉/〈(P∇ρ)3〉 -0.23 -0.25 -0.30

〈cos2(ω,∇ρ)〉 0.09 0.09 0.09
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time, providing measures of the correlation between strain eigenvectors, vorticity, and den-

sity gradient. The vorticity tends to align best with the eigenvector of the middle eigenvalue

σ2 and to a much lesser extent with the eigenvector of the most positive eigenvalue σ1, but

the positive and middle eigenvalue contribute comparable amounts to enstrophy produc-

tion because σ1 is considerably larger than σ2, giving a production ratio of about 2:2:-1.

We observe that the density gradient aligns best with the eigenvector for the compressive

eigenvalue σ3, again consistent with other turbulent flows37,39. The difference in sign of

the production of density gradient means that only the compressive term enhances density

gradients. The production ratio for density gradients is about -1:0:3 to -1:0:4. Consistent

with these results, we find that the correlation between density gradient and vorticity is very

low, with average values of cos2(ω,∇ρ) ≈ 0.09, indicating that the density gradient tends to

align orthogonal to the vorticity40. Note that there is very little sensitivity to the Atwood

number in these results.

IV. CONCLUSIONS

In this work, we have provided some detailed statistics measurements that are important

for improving our understanding the physics of turbulent flow induced by Rayleigh-Taylor

instability. Direct numerical simulation data for miscible fluids with unity Schmidt number

and moderate density contrasts (3/2 to 9) were used for this study. Specifically, we have

examined the degree to which the anisotropy generated by the gravity impacts the length

scales, correlation functions, structure functions, spectra, skewness and flatness. We have

also investigated the alignment of eigenvectors of the strain rate, density gradient, and

vorticity. In general, the large turbulent scales are highly anisotropic due to buoyancy forces

in the direction of gravity, but the flow becomes much more isotropic at small scales in the

core of the mixing layer. As a result, the velocity displays a high degree of anisotropy while its

derivatives behave much more isotropically. Many statistical quantities derived from velocity

derivatives in the middle of the mixing layer have similar properties to those in homogenous,

isotropic turbulence, lending support to the notion of universal small-scale structure in

turbulent flows, regardless of whether they are forced isotropically or anisotropically at

large scales. The turbulence statistics are found to be insensitive to the density contrast in

the range of values considered here.
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It is important to stress the disparate Taylor-microscale Reynolds numbers in the vertical

and horizontal components of the velocity field in the numerical simulation results examined

here; the vertical measure appears to qualify as marginally turbulent while the horizontal

measure falls short. The vertical velocity components are forced predominantly at long

wavelengths by buoyancy and exhibit a nascent inertial range as energy cascades to smaller

scales; the horizontal velocity components, on the other hand, are forced by pressure-strain

terms at somewhat shorter wavelengths and do not exhibit anything like a Kolmogorov

spectrum. This observation suggests that the behavior of a number of important statisti-

cal measurements for these two components is rather distinctive and should be considered

separately at these modest Reynolds numbers. Direct numerical simulations of RTI flow

that qualify as fully turbulent with a universal inertial range will require Taylor-microscale

Reynolds numbers to be greater than ∼ 250 in all directions and will therefore need to use

much greater computational resources than those considered here.
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